Clasificación de Maderas Mediante el Uso de Tecnologías de Olfato Electrónico
Naren Arley et al.
Revista Amazónica Ciencia y Tecnología, 2019 Volumen 8 (2): 157 - 168
168
Guo, L., Yang, Z., & Dou, X. (2017). Artifi-
cial Olfactory System for Trace Identifica-
tion of Explosive Vapors Realized by
Optoelectronic Schottky Sensing. Adv.
Mater., 29(5), 1–8.
Hanssen, F., Wischnewski, N., Moreth, U., &
Magel, E. A. (2011). Molecular identifica-
tion of Fitzroya cupressoides, Sequoia
sempervirens, and Thuja plicata wood using
taxon-specific rDNA-ITS primers. IAWA J.,
32(2), 273–284.
Ideam. (2017). Resultados Monitoreo de la
Deforestación.
Kalaw, J. M., & Sevilla, F. B. (2018). Discri-
mination of wood species based on a carbon
nanotube/polymer composite chemiresistor
array. Holzforschung, 72(3), 215–223.
Müller, K., Haferkorn, S., Grabmer, W.,
Wisthaler, A., Hansel, A., Kreuzwieser, J., …
Herrmann, H. (2006). Biogenic carbonyl
compounds within and above a coniferous
forest in Germany. Atmos. Environ., 40,
81–91.
Najib, M. S., Ahmad, M. U., Funk, P., Taib,
M. N., & Ali, N. A. M. (2012). Agarwood
classification: A case-based reasoning
approach based on E-nose. Proceedings -
2012 IEEE 8th International Colloquium on
Signal Processing and Its Applications,
CSPA 2012, 120–126.
Rana, R., Müller, G., Naumann, A., & Polle,
A. (2008). FTIR spectroscopy in combina-
tion with principal component analysis or
cluster analysis as a tool to distinguish beech
(Fagus sylvatica L.) trees grown at different
sites. Holzforschung, 62(5), 530–538.
Rinne, H. J. I., Guenther, A. B., Greenberg, J.
P., & Harley, P. C. (2002). Isoprene and
monoterpene fluxes measured above Amazo-
nian rainforest and their dependence on light
and temperature. Atmos. Environ., 36(14),
2421–2426.
Rodriguez-Lujan, I., Fonollosa, J., Vergara,
A., Homer, M., & Huerta, R. (2014). On the
calibration of sensor arrays for pattern recog-
nition using the minimal number of experi-
ments. Chemometrics and Intelligent Labo-
ratory Systems, 130, 123–134. https://doi.or-
g/10.1016/j.chemolab.2013.10.012
Ruiz Jiménez, L. F. (2018). Detección de los
insectos de la subfamilia Triatominae basado
en narices electrónicas.
Santos, J. P., & Lozano, J. (2015). Real time
detection of beer defects with a hand held
electronic nose. Proceedings of the 2015
10th Spanish Conference on Electron Devi-
ces, CDE 2015, 1–4.
Scott, S. M., James, D., & Ali, Z. (2006).
Data analysis for electronic nose systems.
Microchim. Acta, 156, 183–207.
Shi, H., Zhang, M., & Adhikari, B. (2017).
Advances of electronic nose and its applica-
tion in fresh foods: A review. Crit. Rev. Food
Sci. Nutr., 8398, 1–11.
Wilson, A. D. (2012). Application of a
Conductive Polymer Electronic-Nose
Device to Identify Aged Woody Samples.
The Third International Conference on
Sensor Device Technologies and Applica-
tions, 77–82.
Wilson, A. D., Lester, D. G., & Oberle, C. S.
(2005). Application of conductive polymer
analysis for wood and woody plant identifi-
cations. For. Ecol. Manage., 209(3),
207–224.
Yan, J., Guo, X., Duan, S., Jia, P., Wang, L.,
Peng, C., & Zhang, S. (2015). Electronic
Nose Feature Extraction Methods: A Review.
Sensors, 15(11), 27804–27831.
Yu, M., Liu, K., Zhou, L., Zhao, L., & Liu, S.
(2016). Testing three proposed DNA barco-
des for the wood identification of Dalbergia
odorifera T. Chen and Dalbergia tonkinensis
Prain. Holzforschung, 70(2), 127–136.