Gen de control interno VpEf1α en Vasconcellea pubescens (chamburo)

Autores/as

DOI:

https://doi.org/10.59410/RACYT-v08n01ep01-0103

Palabras clave:

Housekeeping gene, V. pubescens, expresión, secuenciación, filogenia

Resumen

Los genes conocidos como “housekeeping” controlan o regulan procesos celulares básicos y permanecen activados siempre, independientemente de las condiciones experimentales o entre las células de diferentes tejidos. Vasconcellea pubescens, es una especie ampliamente distribuida en América del Sur y pertenece a la familia Caricaceae al igual que la papaya. En primer lugar, se diseñaron primers para el gen EF1α en base al genoma de Carica papaya y Arabidopsis thaliana. Después, plántulas de V. pubescens se sometieron a tres temperaturas diferentes. La cuantificación de la expresión relativa del gen se realizó por densitometría. Finalmente, los fragmentos obtenidos de la RT-PCR se secuenciaron por Secuenciación Sanger de segunda generación y los análisis bioinformáticos se realizaron con MEGA X mientras que los análisis estadísticos se realizaron con RCommander. Se obtuvo un fragmento de 173 pb que se denominó VpEF1α. La secuencia de nucleótidos y la traducción a aminoácidos resultaron ser muy similares al compararlas con secuencias Ef1α conocidas de otras especies vegetales. A partir de la filogenia realizada con la proteína predicha, VpEF1α se agrupó en un solo clado con secuencias de álamo, cacao y papaya, todas ellas arbóreas, mientras que Arabidopsis y tabaco se ubicaron en otro clado. La expresión del gen VpEF1α fue similar en las tres temperaturas evaluadas cumpliendo el requisito de que no cambie su expresión a diferentes condiciones experimentales. Se describió de esta forma un gen tipo EF1α en V. pubescens (chamburo) que podría ser utilizado como gen control interno o housekeeping en estudios futuros.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Andersen, G. R., Nissen, P., & Nyborg, J. (2003). Elongation factors in protein biosynthesis. Trends in Biochemical Sciences, 28(8), 434–441. https://doi.org/10.1016/S0968-0004(03)00162-2 DOI: https://doi.org/10.1016/S0968-0004(03)00162-2

Antunes Carvalho, F., & Renner, S. S. (2012). A dated phylogeny of the papaya family (Caricaceae) reveals the crop’s closest relatives and the family’s biogeographic history. Molecular Phylogenetics and Evolution, 65(1), 46–53. https://doi.org/10.1016/j.ympev.2012.05.019 DOI: https://doi.org/10.1016/j.ympev.2012.05.019

Axelos, M., Bardet, C., Liboz, T., Le Van Thai, A., Curie, C., & Lescure, B. (1989). The gene family encoding the Arabidopsis thaliana translation elongation factor EF-1α: Molecular cloning, characterization and expression. Molecular and General Genetics MGG, 219(1–2), 106–112. https://doi.org/10.1007/BF00261164 DOI: https://doi.org/10.1007/BF00261164

Baldauf, S. L., Palmer, J. D., & Doolittle, W. F. (1996). The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny. Proceedings of the National Academy of Sciences of the United States of America, 93(15), 7749–7754. https://doi.org/10.1073/pnas.93.15.7749 DOI: https://doi.org/10.1073/pnas.93.15.7749

Barsalobres-Cavallari, C. F., Severino, F. E., Maluf, M. P., & Maia, I. G. (2009). Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Molecular Biology, 10(1), 1. https://doi.org/10.1186/1471-2199-10-1 DOI: https://doi.org/10.1186/1471-2199-10-1

Bolger, A., Scossa, F., Bolger, M. E., Lanz, C., Maumus, F., Tohge, T., … Fernie, A. R. (2014). The genome of the stress-tolerant wild tomato species Solanum pennellii. Nature Genetics, 46(9), 1034–1038. https://doi.org/10.1038/ng.3046 DOI: https://doi.org/10.1038/ng.3046

Chan-León, A. C., Estrella-Maldonado, H., Dubé, P., Fuentes Ortiz, G., Espadas-Gil, F., Talavera May, C., … Santamaría, J. M. (2017). The high content of β-carotene present in orange-pulp fruits of Carica papaya L. is not correlated with a high expression of the CpLCY-β2 gene. Food Research International, 100(August), 45–56. https://doi.org/10.1016/j.foodres.2017.08.017 DOI: https://doi.org/10.1016/j.foodres.2017.08.017

Chomczynski, P., & Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry, 162(1), 156–159. https://doi.org/10.1016/0003-2697(87)90021-2 DOI: https://doi.org/10.1016/0003-2697(87)90021-2

Condeelis, J. (1995). Elongation factor 1 alpha, translation and the cytoskeleton. Trends in Biochemical Sciences, 20(5), 169–170 DOI: https://doi.org/10.1016/S0968-0004(00)88998-7

d’Eeckenbrugge, G. C., Drew, R., Kyndt, T., & Scheldeman, X. (2014). Vasconcellea for Papaya Improvement. In Genetics and Genomics of Papaya (pp. 47–79). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4614-8087-7_4 DOI: https://doi.org/10.1007/978-1-4614-8087-7_4

Dever, T. E., Glynias, M. J., & Merrick, W. C. (1987). GTP-binding domain: Three consensus sequence elements with distinct spacing. Proceedings of the National Academy of Sciences of the United States of America, 84(7), 1814–1818. https://doi.org/10.1073/pnas.84.7.1814 DOI: https://doi.org/10.1073/pnas.84.7.1814

Drozdetskiy, A., Cole, C., Procter, J., & Barton, G. J. (2015). JPred4: A protein secondary structure prediction server. Nucleic Acids Research, 43(W1), W389–W394. https://doi.org/10.1093/nar/gkv332 DOI: https://doi.org/10.1093/nar/gkv332

Duarte, O., & Paull, R. E. (n.d.). Exotic fruits and nuts of the New World. Eisenberg, E., & Levanon, E. Y. (2013). Human housekeeping genes, revisited. Trends in Genetics, 29(10), 569–574. https://doi.org/10.1016/j.tig.2013.05.010 DOI: https://doi.org/10.1016/j.tig.2013.05.010

Gaete-Eastman, C., Figueroa, C. R., Balbon- tín, C., Moya, M., Atkinson, R. G., Herrera, R., & Moya-León, M. A. (2009). Expression of an ethylene-related expansin gene during softening of mountain papaya fruit (Vasconcellea pubescens). Postharvest Biology and Technology, 53(1–2), 58–65. https://doi.org/10.1016/J.POSTHARVBIO.2009.03.007 DOI: https://doi.org/10.1016/j.postharvbio.2009.03.007

Gonen, H., Smith, C. E., Siegel, N. R., Kahana, C., Merrick, W. C., Chakraburtty, K., … Ciechanover, A. (1994). Protein synthesis elongation factor EF-1 alpha is essential for ubiquitin-dependent degradation of certain N alpha-acetylated proteins and may be substituted for by the bacterial elongation factor EF-Tu. Proceedings of the National Academy of Sciences, 91(16), 7648–7652. https://doi.org/10.1073/pnas.91.16.7648 DOI: https://doi.org/10.1073/pnas.91.16.7648

Gonsalves, D. (2004). Transgenic Papaya in Hawaii and Beyond.

Jain, M., Nijhawan, A., Tyagi, A. K., & Khurana, J. P. (2006). Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochemical and Biophysical Research Communications, 345(2), 646–651. https://doi.org/10.1016/j.bbrc.2006.04.140 DOI: https://doi.org/10.1016/j.bbrc.2006.04.140

Joseph, J. T., Poolakkalody, N. J., & Shah, J. M. (2018). Plant reference genes for development and stress response studies. Journal of Biosciences, 43(1), 173–187. https://doi.org/10.1007/s12038-017-9728-z DOI: https://doi.org/10.1007/s12038-017-9728-z

Kumar, G., & Singh, A. K. (2015). Reference gene validation for qRT-PCR based gene expression studies in different developmental stages and under biotic stress in apple. Scientia Horticulturae, 197, 597–606. https://doi.org/10.1016/j.scienta.2015.10.025 DOI: https://doi.org/10.1016/j.scienta.2015.10.025

Leipe, D. D., Wolf, Y. I., Koonin, E. V., & Aravind, L. (2002). Classification and evolution of P-loop GTPases and related ATPases. Journal of Molecular Biology, 317(1), 41–72. https://doi.org/10.1006/jmbi.2001.5378 DOI: https://doi.org/10.1006/jmbi.2001.5378

Li, Q.-F., Sun, S. S. M., Yuan, D.-Y., Yu, H.-X., Gu, M.-H., & Liu, Q.-Q. (2010). Validation of Candidate Reference Genes for the Accurate Normalization of Real-Time Quantitative RT-PCR Data in Rice During Seed Development. Plant Molecular Biology Reporter, 28(1), 49–57. https://doi.org/10.1007/s11105-009-0124-1 DOI: https://doi.org/10.1007/s11105-009-0124-1

Liu, J. H., Li, Y. C., Zhang, J., Gao, P. Z., Wang, A. B., Zhang, N., … Jin, Z. Q. (2016). Banana MaEF1A facilitates plant growth and development. Biologia Plantarum, 60(3), 435–442. https://doi.org/10.1007/s10535-016-0613-7 DOI: https://doi.org/10.1007/s10535-016-0613-7

Løvdal, T., & Lillo, C. (2009). Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. Analytical Biochemistry, 387(2), 238–242. https://doi.org/10.1016/j.ab.2009.01.024 DOI: https://doi.org/10.1016/j.ab.2009.01.024

Luo, H. L., Luo, L. P., Guan, B. C., Li, E. X., Xiong, D. J., Sun, B. T., … Yang, B. Y. (2014). Evaluation of candidate reference genes for RT-qPCR in lily ( Lilium brownii ). The Journal of Horticultural Science and Biotechnology, 89(3), 345–351. https://doi.org/10.1080/14620316.2014.11513089 DOI: https://doi.org/10.1080/14620316.2014.11513089

Ming, R., Hou, S., Feng, Y., Yu, Q., Dionne-Laporte, A., Saw, J. H., … Alam, M. (2008). The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 452(7190), 991–996. https://doi.org/10.1038/nature06856 DOI: https://doi.org/10.1038/nature06856

Nicot, N., Hausman, J. F., Hoffmann, L., & Evers, D. (2005). Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of Experimental Botany, 56(421), 2907–2914. https://doi.org/10.1093/jxb/eri285 DOI: https://doi.org/10.1093/jxb/eri285

Numata, O., Kurosawa, Y., Gonda, K., & Watanabe, Y. (2000). Tetrahymena Elongation Factor-1 Is Localized with Calmodulin in the Division Furrow. Journal of Biochemistry, 127(1), 51–56. https://doi.org/10.1093/oxfordjournals.jbchem.a022583 DOI: https://doi.org/10.1093/oxfordjournals.jbchem.a022583

Ohta, K., Toriyama, M., Miyazaki, M., Murofushi, H., Hosoda, S., Endo, S., & Sakai, H. (1990). The mitotic apparatusas- sociated 51-kDa protein from sea urchin eggs is a GTP-binding protein and is immunologically related to yeast polypeptide elongation factor 1 alpha. The Journal of Biological Chemistry, 265(6), 3240–3247. DOI: https://doi.org/10.1016/S0021-9258(19)39759-5

Ploetz, C., & Ploetz, R. C. (n.d.). INTERNATIONAL COMMISSION ON TROPICAL BIOLOGY AND NATURAL RESOURCES-Tropical Fruit Crops and the Diseases that Affect Their Production-R TROPICAL FRUIT CROPS AND THE DISEASES THAT AFFECT THEIR PRODUCTION.

Ransom-Hodgkins, W. D. (2009). The application of expression analysis in elucidating the eukaryotic elongation factor one alpha gene family in Arabidopsis thaliana. Molecular Genetics and Genomics, 281(4), 391–405. https://doi.org/10.1007/s00438-008-0418-2 DOI: https://doi.org/10.1007/s00438-008-0418-2

Scheldeman, X., Willemen, L., Coppens d’Eeckenbrugge, G., Romeijn-Peeters, E., Restrepo, M. T., Romero Motoche, J., … Goetgebeur, P. (2006). Distribution, diversity and environmental adaptation of highland papayas (Vasconcellea spp.) in tropical and subtropical America. In Plant Conservation and Biodiversity (pp. 293–310). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-6444-9_19 DOI: https://doi.org/10.1007/978-1-4020-6444-9_19

Suhandono, S., Apriyanto, A., & Ihsani, N. (2014). Isolation and Characterization of Three Cassava Elongation Factor 1 Alpha (MeEF1A) Promoters. PLoS ONE, 9(1), e84692. https://doi.org/10.1371/journal.pone.0084692 DOI: https://doi.org/10.1371/journal.pone.0084692

Suzuki, T., Higgins, P. J., & Crawford, D. R. (2000). Control Selection for RNA Quantitation. BioTechniques, 29(2), 332–337. https://doi.org/10.2144/00292rv02 DOI: https://doi.org/10.2144/00292rv02

Tong, Z., Gao, Z., Wang, F., Zhou, J., & Zhang, Z. (2009). Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Molecular Biology, 10(1), 71. https://doi.org/10.1186/1471-2199-10-71 DOI: https://doi.org/10.1186/1471-2199-10-71

Turabelidze, A., Guo, S., & DiPietro, L. A. (2010). Importance of housekeeping gene selection for accurate reverse transcription-quantitative polymerase chain reaction in a wound healing model. Wound Repair and Regeneration, 18(5), 460–466. https://doi.org/10.1111/j.1524-475X.2010.00611.x DOI: https://doi.org/10.1111/j.1524-475X.2010.00611.x

Yamaji, Y., Sakurai, K., Hamada, K., Komatsu, K., Ozeki, J., Yoshida, A., … Hibi, T. (2010). Significance of eukaryotic translation elongation factor 1A in tobacco mosaic virus infection. Archives of Virology, 155(2), 263–268. https://doi.org/10.1007/s00705-009-0571-x DOI: https://doi.org/10.1007/s00705-009-0571-x

Zhu, X., Li, X., Chen, W., Chen, J., Lu, W., Chen, L., & Fu, D. (2012). Evaluation of new reference genes in papaya for accurate transcript normalization under different experimental conditions. PloS One, 7(8), e44405. https://doi.org/10.1371/journal.pone.0044405 DOI: https://doi.org/10.1371/journal.pone.0044405

Descargas

Publicado

2019-08-31

Cómo citar

Cevallos Vilatuña, T. Y., Garzón Salazar, K. A., & Idrovo Espín, F. M. (2019). Gen de control interno VpEf1α en Vasconcellea pubescens (chamburo). Revista Amazónica. Ciencia Y Tecnología, 8(1), 1–11. https://doi.org/10.59410/RACYT-v08n01ep01-0103

Número

Sección

Artículos de Investigación