Internal control gene VpEf1α in Vasconcellea pubescens (chamburo)

Authors

DOI:

https://doi.org/10.59410/RACYT-v08n01ep01-0103

Keywords:

Housekeeping gene, V. pubescens, expression, sequencing, phylogeny

Abstract

The genes known as "housekeeping" control or regulate basic cellular processes and always remain activated, regardless of experimental conditions or between cells of different tissues. Vasconcellea pubescens, a species widely distributed in South America and belongs to the family Caricaceae just like papaya. First, primers for the EF1α gene were designed on basis of the genome of Carica papaya and Arabidopsis thaliana. Then, V. pubescens seedlings were subjected to three different temperatures. The quantification of the relative expression of the gene was performed by densitometry. Finally, the fragments obtained from RT-PCR were sequenced by second generation Sanger Sequencing and the bioinformatic analysis were performed with MEGA X while the statistical analysis were performed with RCommander. A 173 bp fragment was obtained which was named VpEF1α. The nucleotide sequence and the translation to amino acids turned out to be very similar when compared to known EF1α sequences from other plant species. From the phylogeny performed with the predicted protein, VpEF1α was grouped in a single clade with sequences of poplar, cocoa and papaya, all of them arboreal, while Arabidopsis and tobacco were located in another clade. The expression of the VpEF1α gene was similar in all the three temperatures evaluated, fulfilling the requirement that it does not change its expression at different experimental conditions. In this way an EF1 α type gene was described in V. pubescens (chamburo) that could be used as an internal control or housekeeping gene in future studies.

Downloads

Download data is not yet available.

References

Andersen, G. R., Nissen, P., & Nyborg, J. (2003). Elongation factors in protein biosynthesis. Trends in Biochemical Sciences, 28(8), 434–441. https://doi.org/10.1016/S0968-0004(03)00162-2 DOI: https://doi.org/10.1016/S0968-0004(03)00162-2

Antunes Carvalho, F., & Renner, S. S. (2012). A dated phylogeny of the papaya family (Caricaceae) reveals the crop’s closest relatives and the family’s biogeographic history. Molecular Phylogenetics and Evolution, 65(1), 46–53. https://doi.org/10.1016/j.ympev.2012.05.019 DOI: https://doi.org/10.1016/j.ympev.2012.05.019

Axelos, M., Bardet, C., Liboz, T., Le Van Thai, A., Curie, C., & Lescure, B. (1989). The gene family encoding the Arabidopsis thaliana translation elongation factor EF-1α: Molecular cloning, characterization and expression. Molecular and General Genetics MGG, 219(1–2), 106–112. https://doi.org/10.1007/BF00261164 DOI: https://doi.org/10.1007/BF00261164

Baldauf, S. L., Palmer, J. D., & Doolittle, W. F. (1996). The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny. Proceedings of the National Academy of Sciences of the United States of America, 93(15), 7749–7754. https://doi.org/10.1073/pnas.93.15.7749 DOI: https://doi.org/10.1073/pnas.93.15.7749

Barsalobres-Cavallari, C. F., Severino, F. E., Maluf, M. P., & Maia, I. G. (2009). Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Molecular Biology, 10(1), 1. https://doi.org/10.1186/1471-2199-10-1 DOI: https://doi.org/10.1186/1471-2199-10-1

Bolger, A., Scossa, F., Bolger, M. E., Lanz, C., Maumus, F., Tohge, T., … Fernie, A. R. (2014). The genome of the stress-tolerant wild tomato species Solanum pennellii. Nature Genetics, 46(9), 1034–1038. https://doi.org/10.1038/ng.3046 DOI: https://doi.org/10.1038/ng.3046

Chan-León, A. C., Estrella-Maldonado, H., Dubé, P., Fuentes Ortiz, G., Espadas-Gil, F., Talavera May, C., … Santamaría, J. M. (2017). The high content of β-carotene present in orange-pulp fruits of Carica papaya L. is not correlated with a high expression of the CpLCY-β2 gene. Food Research International, 100(August), 45–56. https://doi.org/10.1016/j.foodres.2017.08.017 DOI: https://doi.org/10.1016/j.foodres.2017.08.017

Chomczynski, P., & Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry, 162(1), 156–159. https://doi.org/10.1016/0003-2697(87)90021-2 DOI: https://doi.org/10.1016/0003-2697(87)90021-2

Condeelis, J. (1995). Elongation factor 1 alpha, translation and the cytoskeleton. Trends in Biochemical Sciences, 20(5), 169–170 DOI: https://doi.org/10.1016/S0968-0004(00)88998-7

d’Eeckenbrugge, G. C., Drew, R., Kyndt, T., & Scheldeman, X. (2014). Vasconcellea for Papaya Improvement. In Genetics and Genomics of Papaya (pp. 47–79). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4614-8087-7_4 DOI: https://doi.org/10.1007/978-1-4614-8087-7_4

Dever, T. E., Glynias, M. J., & Merrick, W. C. (1987). GTP-binding domain: Three consensus sequence elements with distinct spacing. Proceedings of the National Academy of Sciences of the United States of America, 84(7), 1814–1818. https://doi.org/10.1073/pnas.84.7.1814 DOI: https://doi.org/10.1073/pnas.84.7.1814

Drozdetskiy, A., Cole, C., Procter, J., & Barton, G. J. (2015). JPred4: A protein secondary structure prediction server. Nucleic Acids Research, 43(W1), W389–W394. https://doi.org/10.1093/nar/gkv332 DOI: https://doi.org/10.1093/nar/gkv332

Duarte, O., & Paull, R. E. (n.d.). Exotic fruits and nuts of the New World. Eisenberg, E., & Levanon, E. Y. (2013). Human housekeeping genes, revisited. Trends in Genetics, 29(10), 569–574. https://doi.org/10.1016/j.tig.2013.05.010 DOI: https://doi.org/10.1016/j.tig.2013.05.010

Gaete-Eastman, C., Figueroa, C. R., Balbon- tín, C., Moya, M., Atkinson, R. G., Herrera, R., & Moya-León, M. A. (2009). Expression of an ethylene-related expansin gene during softening of mountain papaya fruit (Vasconcellea pubescens). Postharvest Biology and Technology, 53(1–2), 58–65. https://doi.org/10.1016/J.POSTHARVBIO.2009.03.007 DOI: https://doi.org/10.1016/j.postharvbio.2009.03.007

Gonen, H., Smith, C. E., Siegel, N. R., Kahana, C., Merrick, W. C., Chakraburtty, K., … Ciechanover, A. (1994). Protein synthesis elongation factor EF-1 alpha is essential for ubiquitin-dependent degradation of certain N alpha-acetylated proteins and may be substituted for by the bacterial elongation factor EF-Tu. Proceedings of the National Academy of Sciences, 91(16), 7648–7652. https://doi.org/10.1073/pnas.91.16.7648 DOI: https://doi.org/10.1073/pnas.91.16.7648

Gonsalves, D. (2004). Transgenic Papaya in Hawaii and Beyond.

Jain, M., Nijhawan, A., Tyagi, A. K., & Khurana, J. P. (2006). Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochemical and Biophysical Research Communications, 345(2), 646–651. https://doi.org/10.1016/j.bbrc.2006.04.140 DOI: https://doi.org/10.1016/j.bbrc.2006.04.140

Joseph, J. T., Poolakkalody, N. J., & Shah, J. M. (2018). Plant reference genes for development and stress response studies. Journal of Biosciences, 43(1), 173–187. https://doi.org/10.1007/s12038-017-9728-z DOI: https://doi.org/10.1007/s12038-017-9728-z

Kumar, G., & Singh, A. K. (2015). Reference gene validation for qRT-PCR based gene expression studies in different developmental stages and under biotic stress in apple. Scientia Horticulturae, 197, 597–606. https://doi.org/10.1016/j.scienta.2015.10.025 DOI: https://doi.org/10.1016/j.scienta.2015.10.025

Leipe, D. D., Wolf, Y. I., Koonin, E. V., & Aravind, L. (2002). Classification and evolution of P-loop GTPases and related ATPases. Journal of Molecular Biology, 317(1), 41–72. https://doi.org/10.1006/jmbi.2001.5378 DOI: https://doi.org/10.1006/jmbi.2001.5378

Li, Q.-F., Sun, S. S. M., Yuan, D.-Y., Yu, H.-X., Gu, M.-H., & Liu, Q.-Q. (2010). Validation of Candidate Reference Genes for the Accurate Normalization of Real-Time Quantitative RT-PCR Data in Rice During Seed Development. Plant Molecular Biology Reporter, 28(1), 49–57. https://doi.org/10.1007/s11105-009-0124-1 DOI: https://doi.org/10.1007/s11105-009-0124-1

Liu, J. H., Li, Y. C., Zhang, J., Gao, P. Z., Wang, A. B., Zhang, N., … Jin, Z. Q. (2016). Banana MaEF1A facilitates plant growth and development. Biologia Plantarum, 60(3), 435–442. https://doi.org/10.1007/s10535-016-0613-7 DOI: https://doi.org/10.1007/s10535-016-0613-7

Løvdal, T., & Lillo, C. (2009). Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. Analytical Biochemistry, 387(2), 238–242. https://doi.org/10.1016/j.ab.2009.01.024 DOI: https://doi.org/10.1016/j.ab.2009.01.024

Luo, H. L., Luo, L. P., Guan, B. C., Li, E. X., Xiong, D. J., Sun, B. T., … Yang, B. Y. (2014). Evaluation of candidate reference genes for RT-qPCR in lily ( Lilium brownii ). The Journal of Horticultural Science and Biotechnology, 89(3), 345–351. https://doi.org/10.1080/14620316.2014.11513089 DOI: https://doi.org/10.1080/14620316.2014.11513089

Ming, R., Hou, S., Feng, Y., Yu, Q., Dionne-Laporte, A., Saw, J. H., … Alam, M. (2008). The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 452(7190), 991–996. https://doi.org/10.1038/nature06856 DOI: https://doi.org/10.1038/nature06856

Nicot, N., Hausman, J. F., Hoffmann, L., & Evers, D. (2005). Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of Experimental Botany, 56(421), 2907–2914. https://doi.org/10.1093/jxb/eri285 DOI: https://doi.org/10.1093/jxb/eri285

Numata, O., Kurosawa, Y., Gonda, K., & Watanabe, Y. (2000). Tetrahymena Elongation Factor-1 Is Localized with Calmodulin in the Division Furrow. Journal of Biochemistry, 127(1), 51–56. https://doi.org/10.1093/oxfordjournals.jbchem.a022583 DOI: https://doi.org/10.1093/oxfordjournals.jbchem.a022583

Ohta, K., Toriyama, M., Miyazaki, M., Murofushi, H., Hosoda, S., Endo, S., & Sakai, H. (1990). The mitotic apparatusas- sociated 51-kDa protein from sea urchin eggs is a GTP-binding protein and is immunologically related to yeast polypeptide elongation factor 1 alpha. The Journal of Biological Chemistry, 265(6), 3240–3247. DOI: https://doi.org/10.1016/S0021-9258(19)39759-5

Ploetz, C., & Ploetz, R. C. (n.d.). INTERNATIONAL COMMISSION ON TROPICAL BIOLOGY AND NATURAL RESOURCES-Tropical Fruit Crops and the Diseases that Affect Their Production-R TROPICAL FRUIT CROPS AND THE DISEASES THAT AFFECT THEIR PRODUCTION.

Ransom-Hodgkins, W. D. (2009). The application of expression analysis in elucidating the eukaryotic elongation factor one alpha gene family in Arabidopsis thaliana. Molecular Genetics and Genomics, 281(4), 391–405. https://doi.org/10.1007/s00438-008-0418-2 DOI: https://doi.org/10.1007/s00438-008-0418-2

Scheldeman, X., Willemen, L., Coppens d’Eeckenbrugge, G., Romeijn-Peeters, E., Restrepo, M. T., Romero Motoche, J., … Goetgebeur, P. (2006). Distribution, diversity and environmental adaptation of highland papayas (Vasconcellea spp.) in tropical and subtropical America. In Plant Conservation and Biodiversity (pp. 293–310). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-6444-9_19 DOI: https://doi.org/10.1007/978-1-4020-6444-9_19

Suhandono, S., Apriyanto, A., & Ihsani, N. (2014). Isolation and Characterization of Three Cassava Elongation Factor 1 Alpha (MeEF1A) Promoters. PLoS ONE, 9(1), e84692. https://doi.org/10.1371/journal.pone.0084692 DOI: https://doi.org/10.1371/journal.pone.0084692

Suzuki, T., Higgins, P. J., & Crawford, D. R. (2000). Control Selection for RNA Quantitation. BioTechniques, 29(2), 332–337. https://doi.org/10.2144/00292rv02 DOI: https://doi.org/10.2144/00292rv02

Tong, Z., Gao, Z., Wang, F., Zhou, J., & Zhang, Z. (2009). Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Molecular Biology, 10(1), 71. https://doi.org/10.1186/1471-2199-10-71 DOI: https://doi.org/10.1186/1471-2199-10-71

Turabelidze, A., Guo, S., & DiPietro, L. A. (2010). Importance of housekeeping gene selection for accurate reverse transcription-quantitative polymerase chain reaction in a wound healing model. Wound Repair and Regeneration, 18(5), 460–466. https://doi.org/10.1111/j.1524-475X.2010.00611.x DOI: https://doi.org/10.1111/j.1524-475X.2010.00611.x

Yamaji, Y., Sakurai, K., Hamada, K., Komatsu, K., Ozeki, J., Yoshida, A., … Hibi, T. (2010). Significance of eukaryotic translation elongation factor 1A in tobacco mosaic virus infection. Archives of Virology, 155(2), 263–268. https://doi.org/10.1007/s00705-009-0571-x DOI: https://doi.org/10.1007/s00705-009-0571-x

Zhu, X., Li, X., Chen, W., Chen, J., Lu, W., Chen, L., & Fu, D. (2012). Evaluation of new reference genes in papaya for accurate transcript normalization under different experimental conditions. PloS One, 7(8), e44405. https://doi.org/10.1371/journal.pone.0044405 DOI: https://doi.org/10.1371/journal.pone.0044405

Published

2019-08-31

How to Cite

Cevallos Vilatuña, T. Y., Garzón Salazar, K. A., & Idrovo Espín, F. M. (2019). Internal control gene VpEf1α in Vasconcellea pubescens (chamburo). Revista Amazónica. Ciencia Y Tecnología, 8(1), 1–11. https://doi.org/10.59410/RACYT-v08n01ep01-0103

Issue

Section

Artículos de Investigación