Kinetic analysis of biodegradability anaerobia of the filter cane with pre-treatment thermoalcalino in the production of methane

Authors

  • Jorge Manuel Ríos Obregón Universidad Regional Amazónica IKIAM image/svg+xml
  • Regla Bernal Gutiérrez Universidad Estatal Amazónica image/svg+xml
  • Lisbet López González University of Sancti Spíritus José Martí Pérez image/svg+xml
  • Janet Jiménez Hernández Universidad Regional Amazónica IKIAM image/svg+xml
  • Leobel Morell Pérez Universidad Estatal Amazónica image/svg+xml

DOI:

https://doi.org/10.59410/RACYT-v07n01ep02-0088

Keywords:

Hydrolysis, waste, anaerobic digestion, methane, filter cane, pretreatment

Abstract

Filter cane is the main residue of the sugar manufacturing process, and its high volume has become an important pollutant of the environment. The thermoalkaline pretreatment is an effective method given the nature of filter cane and allows a greater production of methane in anaerobic conditions. In this research, a kinetic analysis of the anaerobic biodegradability of the previously treated filter cake is carried out, at different times, with sodium hydroxide NaOH, as chemical agent and temperature of 75 0C. For the study filter cane was taken from the sugar mill "Melanio Hernández", located in the province of Sancti Spíritus; Cuba and its physical-chemical characterization was carried out through the analysis of total solids (ST), volatile solids (SV) and pH. Kinetic parameters were determined by anaerobic digestion in mesophyllic conditions (37 ± 1 °C) is obtained that the kinetic models that describe the improved performance of anaerobic digestion were Chapman Hill and with a high correlation coefficient. The lower yields achieved compared with the literature for other substrates may be affected by undesirable compounds that could be solubilized and affect the anaerobic digestion process. Oxidation of lignin to soluble phenolic is a risk for possible inhibitory effect on the anaerobic digestion process. Among them are acids, aldehydes and aromatic alcohols. Maillard reactions can also occur under thermo-alkaline conditions with substrates containing proteins and carbohydrates, as is the case of the study, with the formation of recalcitrant compounds such as melanoidins.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Borja, R., Martín, A., Durán, M., & R., Maestro. (1991). Estudio cinético comparativo del proceso de digestión anaeronia del alpechín en los Límites mesofílico y termofílico de temperatura. Grasas y aceites, 43 (6). 341-346 DOI: https://doi.org/10.3989/gya.1992.v43.i6.1130

Contreras, L M., López, L, & Romero, O. (2006). Producción de biogás con fines energéticos. De lo histórico a lo estratégico. Revista futuros, 16(4), 1-8

Cruz, F. (1991). Biogás de cachaza. Revista Energía., 2, 23 - 35

González, H. Fernández, E. Collazo, Y. . (1995). Nueva tecnología para el tratamiento de efluentes. Revista Ingeniería Química, 312 (4). 46-49

Gossett, J M. Belser R L. (1982). Anaerobic digestion of waste activated sludge. Journal of the Environmental Engineering Division, 108(6), 1101-1120 DOI: https://doi.org/10.1061/JEEGAV.0001359

Gossett, J.M., Stuckey, D.C., Owen, W.F., & McCarty, P.L. (1982). Heat treatment and anaerobic digestion of refuse. J. Environ. Eng. Div., 108, 437–454. DOI: https://doi.org/10.1061/JEEGAV.0001295

Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol, 100(1), 10-18. doi: https://doi.org/10.1016/j.biortech.2008.05.027

Hendriks, A., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100(1), 10-18 DOI: https://doi.org/10.1016/j.biortech.2008.05.027

Linke, B., & Schelle, H.. (2000). Solid State Anaerobic Digestion of Organic Wastes. AgEng Warwick. EurAgEng. Paper Number 00-AP-025., 1-10

Mähnert, P. (2007). Kinetik der Biogasproduktion aus nachwachsenden Rohstoffen und Gülle., Humboldt-Universität zu Berlin, Landwirtschaftlich-Gärtnerische Fakultät

Meunchang, S. , Alfons, JM. , Panichsakpatana, S., & Weaver, R W. (2005). Co-composting of filter cake and bagasse; by-products from a sugar mill. Bioresource technology., 96(4), 437-442 DOI: https://doi.org/10.1016/j.biortech.2004.05.024

Penaud, V., Delgenés, J.P., & Moletta, R. (1999). Thermo-chemical pretreatment of a microbial biomass: influence of sodium hydroxide addition on solubilization and anaerobic biodegradability. Enzyme and Microbial Technology, 25 258–263 DOI: https://doi.org/10.1016/S0141-0229(99)00037-X

Radjaram, B., & Saravanane, R. (2011). Assessment of optimum dilution ratio for biohydrogen production by anaerobic co-digestion of press mud with sewage and water. Bioresource technology., 102(3), 2773-2780. DOI: https://doi.org/10.1016/j.biortech.2010.11.075

Sánchez, C., de la Noval, B., Hernández, M I., Hernández, JC,. Hernández, A N, García, D.,. . . Fernández, F. (1996). Biofertilizers and Plant Nutrition. Cultivos tropicales: CT., 17(3), 4

Sarria, P. Solano, A. Preston, TR. (1990). Utilización de jugo de caña y cachaza panelera en la alimentación de cerdos. Livestock Research for Rural Development, 2(2), 92-100

Velarde, S.E., León, O.M., Cuéllar, A.I., & Villegas, D.R. (2004). Production and application of compost (1th ed.). La Habana. Cuba

Published

2018-04-26

How to Cite

Ríos Obregón, J. M., Bernal Gutiérrez, R., López González, L., Jiménez Hernández, J., & Morell Pérez, L. (2018). Kinetic analysis of biodegradability anaerobia of the filter cane with pre-treatment thermoalcalino in the production of methane. Revista Amazónica. Ciencia Y Tecnología, 7(1), 12–18. https://doi.org/10.59410/RACYT-v07n01ep02-0088

Issue

Section

Agroindustria y Ciencia de los Alimentos