Selection of isolates of trichoderma spp. For the control of bacterial cancer (Clavibacter michiganensis subsp. Michiganensis) of tomato (Lycopersicum esculentum mill.)

Authors

DOI:

https://doi.org/10.59410/RACYT-v06n01ep02-0076

Keywords:

Bacteriano, trichiderma tomate

Abstract

In this research, Trichoderma spp. isolates collected from La Plata tomato fields (Buenos Aires, Argentina) were evaluated in vitro against of Clavibacter michiganensis subsp. michiganensis pathogen of the bacterial canker of tomato. Trichoderma selective media was used to isolate nine strains of Trichoderma spp. from soil samples using the serial dilution method. Its ability to suppress and inhibit pathogen growth was evaluated in an in vitro assay. All Trichoderma isolates showed ability to suppress the bacterial growth  between 14 and 16%; however, just isolate A4 was capable to inhibit the pathogen development in 15,76%, approximately. Trichoderma spp. isolates obtained from tomato fields in the tomato fields of La Plata has the potential to prevent the bacterial canker under glasshouse conditions.

Downloads

Download data is not yet available.

References

Atgrawal, K., Sharma, D., & Jain, V. (2012). Seed-borne bacterial diseases of tomato (Lycopersicum esculentum Mill.) and their control measures: a review. International Journal of Food, Agriculture and Veterinary Sciencies, 2(2), 173-182

Balestra, G., Heydari, A., Ceccarelli, D., Ovidi, E., & Quattrucci, A. (2009). Antibacterial effect of Allium sativum and Ficus carica extracts on tomato bacterial pathogens. Crop Protection, 28(10), 807-811 DOI: https://doi.org/10.1016/j.cropro.2009.06.004

Consolo, V., Mónaco, C., Cordo, C., Salerno, G. (2012). Characterization of novel Trichoderma spp. isolates as a search for effective biocontrollers of fungal diseases of economically important crops in Argentina World Journal of Microbiology and Biotechnology. 28:1389-1398 DOI: https://doi.org/10.1007/s11274-011-0938-5

Davis, M., Graves, A., Vidaver, A., & Harris, R. (1984). Clavibacter: a new genus containing some phytopathogenic coryneform bacteria. International Journal of Systematic Bacteriology, 34, 107-117 DOI: https://doi.org/10.1099/00207713-34-2-107

De León, L., Sivero, F., López, M., & Rodríguez, A. (2011). Clavibacter michiganensis subsp. michiganensis, a seed-born tomato pathogen: Healthy seeds are still the goal. Plant Diseases, 95(11), 1328-1339 DOI: https://doi.org/10.1094/PDIS-02-11-0091

EFSA (2014). Scientific opinion on the pest categorisation of Clavibacter michiga- nensis subsp. michiganensis (Smith) Davis et al. EFSA Journal, 12(6), 1-26 DOI: https://doi.org/10.2903/j.efsa.2014.3721

Elad, Y., Chet, I., & Henis, Y. (1981). A selective medium for improving quantitative isolation of Trichoderma spp. from soil. Phytoparasitica, 9(1), 59-67 DOI: https://doi.org/10.1007/BF03158330

Eziashi, E., Uma, N., Adekunle, A., & Airede, C. (2006). Effect of metabolites produced by Trichoderma species against Ceratocystis paradoxa in culture medium. African Journal of Biotechnology, 5(9), 703-706 DOI: https://doi.org/10.3923/pjbs.2006.1987.1990

Ezziyyani, M., Sánchez, C., Ahmed, A., Requena, M., & Candela, M. (2004). Trichoderma harzianum como biofungicida para el biocontrol de Phytophthora capsici en plantas de pimiento (Capsicum annuum L.). Anales de Biología, 26, 35-45

Gartemann, K., Kirchner, O., Engemann, J., Grafen, I., Eichenlaub, R., & Burger, A. (2003). Clavibacter michiganensis subsp. michiganensis: First steps in the understanding of virulence of a Gram-positive phytopathogenic bacterium. Journal of Biotechnology, 106, 179-191 DOI: https://doi.org/10.1016/j.jbiotec.2003.07.011

Harman, G., Howell, C., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species--opportunistic, avirulent plant symbionts. Nature Reviews. Microbiology, 2(1), 43–56. DOI: https://doi.org/10.1038/nrmicro797

Harman, G. (2006). Overview of Mechanisms and Uses of Trichoderma spp. Phytopathology, 96, 190–194. https://doi.org/10.1094/PHYTO-96-0190 DOI: https://doi.org/10.1094/PHYTO-96-0190

Joshi, B., Bhatt, R., & Bahukhandi, D. (2010). Antagonistic and plant growth activity of Trichoderma isolates of Western Himalayas. Journal of Environmental Biology, 31(6), 921-928

Leelavathi, M., Vani, L., & Reena, P. (2014). Antimicrobial activity of Trichoderma harzianum against bacteria and fungi. International Journal of Current Microbiology and Applied Sciences, 3(1), 96-103

Liu, B., Glenn, D., & Buckley, K. (2008). Trichoderma communities in soils from organic, sustainable, and conventional farms, and their relation with Southern blight of tomato. Soil Biology and Biochemistry, 40(5):1124–1136. https://doi.org/10.1016/j.soilbio.2007.12.005 DOI: https://doi.org/10.1016/j.soilbio.2007.12.005

Liu, J. & Schelar, E. (2012). Pesticide exposure and child neurodevelopment. Wordplace health Safety, 60(5):235-243 DOI: https://doi.org/10.3928/21650799-20120426-73

Mayo, S., Gutierrez, S., Malmierca, M. Lorenzana, A., Campelo, M., Hermosa, R., Cosquero, P. (2015). Influence of Rhizotocnia solani and Trichoderma spp. in growth of bean (Phaseolus vulgaris L.) and in the induction of plant defense-related genes. Frontiers in plant science, 6:685 DOI: https://doi.org/10.3389/fpls.2015.00685

Patil, A., Laddha, A., Lunge, A., Paikrao, H., & Mahure, S. (2012). In vitro antagonistic properties of selected Trichoderma species against tomato root rot causing Pythium species. International Journal of Science Environment and Technology, 1(4), 302-315

Ommati, F. & Zaker, M. (2012). In vitro and greenhouse evaluation of Trichoderma isolates for biological control of potato wilt disease (Fusarium solani). Archives of Phytopathology and plant protection, 45 (13):1715-1723 DOI: https://doi.org/10.1080/03235408.2012.702467

Samuels, G., Chaverri, P., Farr, D., & McCray, E. (2015). Obtenido de Trichoderma Online, Systematic Mycology and Microbiology Laboratory, ARS, USDA: http://taxadescriptions/keys/TrichodermaIndex.cfm

Stirling, G. (2011). Biological control of plant-parasitic nematodes: an ecological perspective, a review of progress and opportunities for further research. En K. Davies, & Y. Spiegel (Edits.), Biological control of plant-parasitic nematodes: building coherence between microbial ecology and molecular mechanisms (1 ed., págs. 1-38). Springer DOI: https://doi.org/10.1007/978-1-4020-9648-8_1

Stocco, M., Mónaco, C., & Cordo, C. (2010). A comparision of preservation method for Trichoderma harzianum cultures. Revista Iberoamericana de Micología, 27(4), 2013-2015 DOI: https://doi.org/10.1016/j.riam.2010.06.001

Verma, M., Brar, S., Tyagi, R. & Suram- palli, V. (2007). Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochemical Engineering Journal, 37(1):1-20 DOI: https://doi.org/10.1016/j.bej.2007.05.012

Vinale, F., Sivasithamparam, K., Ghisalberti, E., Marra, R., Woo, S., & Lorito, M. (2014). Trichoderma secondary metabolites active on plants and fungal pathogens. The Open Mycology Journal, 8(1):127-139 DOI: https://doi.org/10.2174/1874437001408010127

Xu, X., Miller, F., Baysal-Gurel, K., Gartemann, R., Eichenlaub, K., & Rajashekara, G. (2010). Bioluminiscence imaging of Clavibacter michiganensis subsp. michiganensis infection in tomato seeds and plants. Applied Environmental Microbiology, 76, 3978-3988 DOI: https://doi.org/10.1128/AEM.00493-10

Published

2017-04-27

How to Cite

Guerrero, R., Mónaco, C., Stocco, M., Rolleri, J., & Guerrero, N. (2017). Selection of isolates of trichoderma spp. For the control of bacterial cancer (Clavibacter michiganensis subsp. Michiganensis) of tomato (Lycopersicum esculentum mill.). Revista Amazónica. Ciencia Y Tecnología, 6(1), 9–20. https://doi.org/10.59410/RACYT-v06n01ep02-0076

Issue

Section

Sistemas de Producción, Biotecnología y Protección Vegetal