Application of Trichoderma harzianum for the control of bacterial cancer (Clavibacter michiganensis subsp. michiganensis) of tomato (Lycopersicum esculentum mill.) in a greenhouse

Authors

DOI:

https://doi.org/10.59410/RACYT-v06n03ep04-0087

Keywords:

Biocontrol, disease, tomato, Trichoderma koningiopsis, canker

Abstract

Five isolates of Trichoderma harzianum were evaluated under greenhouse conditions, these strains were collected from La Plata tomato fields (Buenos Aires, Argentina) and tested in vitro against of Clavibacter michiganensis subsp. Michiganensis, pathogen of the bacterial canker of tomato. The yt isolates were inoculated in 15 days seedlings using two methods: (1) soil inoculation during the transplant and (2) leaf sprayed three days before pathogen inoculation.  Ten days after the transplant, the pathogen was inoculated by spraying a bacterial suspension with 1 x 107 CFU/ml, approximately. Five weeks after the transplant plant height, number of flowers and fruits were evaluated; results showed there were statistical differences between biocontrol treatments and the control. Tomato seedlings with leaves treated had bigger averages than those with soil inoculation. After eight weeks from transplant, disease symptomatology was evaluated. Approximately, 50% of pathogen control plants showed symptoms associated with the pathogen under glasshouse conditions, such us: marginal necrosis of leaflets and generalized slight wilting; the biocontrol strains had a positive effect over treated seedlings which were healthier than control ones, as well as they had better vegetative development and dry mass accumulation.

Downloads

Download data is not yet available.

References

Agrios, G. (2005). Plant Pathology (5 ed.). London: Elsevier Academic Press.p. 251

Bailey, B., Bae, H., Melnick, R., & Crozier, J. (2011). The endophytic Trichoderma hamatum isolate DIS 219b enhances seedling growth and delays the onset of drought stress in Theobroma cacao. En M. Pirttila, C. Frank, M. Pirttila, & C. Frank (Edits.), Endophytes of Forest Trees: Biology and Applications (p.157-172). Netherlands: Springer DOI: https://doi.org/10.1007/978-94-007-1599-8_10

Borboa, J., Rueda, E., Acedo, E., Ponce, J., Cruz, M., Juárez, O., & García, A. (2009). Detection of Clavibacter michiganensis subspecie michiganensis in Tomato of the state of Sonora, México. Fitotecnia Mexicana, 32(4), 319-326 DOI: https://doi.org/10.35196/rfm.2009.4.319-326

Brotman, Y., Landau, U., Cuadros-Inostroza, A., Tohge, T., Takayuki, T., Fernie, A. & Willmitzer, L. (2013). Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathogens, 9(3), 1-15 DOI: https://doi.org/10.1371/journal.ppat.1003221

Consolo, V., Mónaco, C., Cordo, C., Salerno, G. (2012). Characterization of novel Trichoderma spp. isolates as a search for effective biocontrollers of fungal diseases of economically important crops in Argentina. World Journal of Microbiology and Biotechnology, 28:1389-1398 DOI: https://doi.org/10.1007/s11274-011-0938-5

Coppola, M., Cascone, P., Chiusano, M., Colanuoro, C., Lorito, M., Pienannchio, F., Rao, R., Woo, S., Guerrieri, E. (2017) Trichoderma harzianum enhances tomato indirect defense against aphids. Insect science. En prensa. doi: https://doi.org/10.1111/1744-7917.12475 DOI: https://doi.org/10.1111/1744-7917.12475

Davis, M., Graves, A., Vidaver, A., & Harris, R. (1984). Clavibacter: a new genus containing some phytopathogenic coryne form bacteria. International Journal of Systematic Bacteriology, 34, 107-117 DOI: https://doi.org/10.1099/00207713-34-2-107

De León, L., Sivero, F., Lopez, M., & Rodriguez, A. (2011). Clavibacter michiganensis subsp. michiganensis, a seed born tomato pathogen: Healthy seeds are still the goal. Plant Diseases, 95(11), 1328-1339 DOI: https://doi.org/10.1094/PDIS-02-11-0091

EFSA (2014). Scientific opinion on the pest categorisation of Clavibacter michiganensis subsp. michiganensis (Smith) Davis et al. EFSA Journal, 12(6), 1-26 DOI: https://doi.org/10.2903/j.efsa.2014.3721

Elad, Y., Chet, I., & Henis, Y. (1981). A selective medium for improving quantitative isolation of Trichoderma spp. from soil. Phytoparasitica, 9(1), 59-67 DOI: https://doi.org/10.1007/BF03158330

García, H., Romero, S., González, C., Nava, G., Martínez, R. (2012). Isolation of native strains of Trichoderma spp., from horticultural soils of the valley of Toluca, for potential biocontrol of Sclerotinia. Tropical and Subtropical agroecosystems, 15:357-365

Hermosa, R., Viterbo, A., Chet, I., & Monte, E. (2012). Plant-beneficial effects of Trichoderma and of its genes. Microbiology, 158(1), 17-25 DOI: https://doi.org/10.1099/mic.0.052274-0

Hoitink, H., Madden, L., & Dorrance, A. (2006). Systemic resistance induced by Trichoderma spp.: interactions between the host, the pathogen, the biocontrol agent, and soil organic matter quality. Phytopathology, 96(2), 186-189 DOI: https://doi.org/10.1094/PHYTO-96-0186

Lelis, F. (2013). Colonização de sementes e plantas de tomate cultivadas in vitro por Clavibacter michiganensis subsp. michiganensis transformadas com gfp. Tesis Doctoral de la Universidade Federal de Lavras.78p

Lo, C., & Lin, C. (2002). Screening Strains of Trichoderma spp. for plant growth enhancement in Taiwan. Plant Pathology, 11, 215-220

Maketon, M., Apisitsantikul, J., Siriraweekful, C. (2008). Greenhouse evaluation of Bacillus subtilis AP-01 and Trichoderma harzianum AP-001 in controlling tobacco diseases. Brazilian Journal of Microbiology, 39:296-300 DOI: https://doi.org/10.1590/S1517-83822008000200018

Mayo, S., Gutierrez, S., Malmierca, M. Lorenzana, A., Campelo, M., Hermosa, R., Cosquero, P. (2015). Influence of Rhizotocnia solani and Trichoderma spp. in growth of bean (Phaseolus vulgaris L.) and in the induction of plant defense-related genes. Frontiers in plant science, 6:685 DOI: https://doi.org/10.3389/fpls.2015.00685

Naseby, D., Pascual, J., & Lynch, J. (2000). Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum populations, soil microbial communities and soil enzyme activities. Journal of Applied Microbiology, 88(1), 161-169 DOI: https://doi.org/10.1046/j.1365-2672.2000.00939.x

Nawrocka, J., & Malolepsza, U. (2013). Diversity in plant systemic resistance induced by Trichoderma. Biological Control, 67, 149-156 DOI: https://doi.org/10.1016/j.biocontrol.2013.07.005

OEPP/EPPO. (2013). PM 7/42 (2) Clavibacter michiganensis subsp. michiganensis. European and Mediterranean Plant Protection Organization/EPPO. Bulletin EPPO, 43 p DOI: https://doi.org/10.1111/epp.12020

Ommati, F. & Zaker, M. (2012). In vitro and greenhouse evaluation of Trichoderma isolates for biological control of potato wilt disease (Fusarium solani). Archives of Phytopathology and plant protection, 45 (13):1715-1723 DOI: https://doi.org/10.1080/03235408.2012.702467

Shaad, N., Jones, J., & Chun, W. (2001). Laboratory guide for identification of plant pathogenic bacteria (3 ed.). APS Press. 398p

Tucci, M., Roucco, M., De Masi, L., De Palma, M., & Lorito, M. (2010). The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Molecular Plant Pathology, 1-14 DOI: https://doi.org/10.1111/j.1364-3703.2010.00674.x

UNLP. (2016). Reportes meteorológicos. Boletín Estación Experimental Ing.Agr. J.Hirschhorn. Obtenido de http://www.agro.unlp.edu.ar/institucional/boletin-estacion-experimental-jh

Vitti, A., Pellegrini, F., Nali, C., Lovelli, S., Sofo, A., Valerio, M., Scopa, A., Nuzzaci, M.. (2016). Trichoderma harzianum T-22 induces systemic resistance in tomato infected by Cucumber mosaic virus. Frontiers in plant science, 7:1520 DOI: https://doi.org/10.3389/fpls.2016.01520

Windham, M., Elad, Y., & Baker, R. (1986). A mechanism of increased plant growth induced by Trichoderma spp. Phytopathology, 76(5), 518-521 DOI: https://doi.org/10.1094/Phyto-76-518

Xu, X., Miller, F., Baysal-Gurel, K., Gartemann, R., Eichenlaub, K., & Rajashekara, G. (2010). Bioluminiscence imaging of Clavibacter michiganensis subsp. michiganensis infection in tomato seeds and plants. Applied Environmental Microbiology, 76, 3978-3988 DOI: https://doi.org/10.1128/AEM.00493-10

Published

2017-12-27

How to Cite

Guerrero, R., Mónaco, C., Stocco, M., Consolo, V., Rolleri, J., & Guerrero, N. (2017). Application of Trichoderma harzianum for the control of bacterial cancer (Clavibacter michiganensis subsp. michiganensis) of tomato (Lycopersicum esculentum mill.) in a greenhouse. Revista Amazónica. Ciencia Y Tecnología, 6(3), 230–243. https://doi.org/10.59410/RACYT-v06n03ep04-0087

Issue

Section

Sistemas de Producción, Biotecnología y Protección Vegetal