Biotransformaciones por hongos endófitos aislados de plantas medicinales tradicionales ecuatorianas: conectando la etnomedicina con la biotecnología

Autores/as

DOI:

https://doi.org/10.59410/RACYT-v01n03ep06-0020

Palabras clave:

etnomedicina, plantas amazónicas, plantas andinas, endófito, hongos endófitos, biotecnología, biotransformación

Resumen

Ecuador, un país pequeño con diversos ecosistemas en las regiones de la Amazonia, los Andes y la costa del Pacífico, es considerado como uno de los 17países "megadiversos", y los grupos étnicos nativos y las comunidades rurales tienen una  fuerte tradición etnomedicinal en el uso de plantas nativas en la curación. El conocimiento etnobotánico tradicional puedes ser usado para guiar la investigación biotecnológica en plantas medicinales, aún cuando la aplicación nueva e innovadora no está relacionada estrechamente con el uso tradicional de las plantas. En base al conocimiento etnomedicinal de las comunidades indígenas, las siguientes plantas de la Amazoníay de los Andes del Ecuador fueron elegidas para la investigación: Piper aduncum (Piperaceae), Maytenus macrocarpa (Celastraceae), Schinus molle (Anacardiaceae), Tecoma stans (Bignoniaceae) y Myrcianthes hallii (Myrtaceae). La investigación se enfocó en (i) determinar la presencia de hongos endofitos en las plantas seleccionadas, (ii) aislar y cultivar in vitro las cepas de endofitos, (iii) evaluar la capacidad de los endofitos aislados de biotransformar compuestos considerados intermedios de la sintesis de medicamentos. Los siguientes compuestos fueron investigados: (+/-)-cis-bicyclo[3.2.0]hept-2-en-6-one, acetophenone, 1-indanone, 2- furyl methyl ketone, 2-methylcyclopentanone, 2-methylcyclohexanone, 2- methoxycyclohexanone. 364 cepas funginas han sido aisladas. Entre ellas, cinco cepas han biotransformado el acetophenone a (S)-1-phenylethanol, con importantes rendimientos (78-97%) y excesos enantiomericos (78-100%). Tres cepas han producido también fenoles, probablemente debido a reacciones enzimáticas que catalizan las oxidaciones de Baeyer-Villiger. Quince cepas funginas han producico los lactones (-)-(1S,5R)-2-oxabicyclo[3.3.0]oct-6-en-3-one y (-)-(1R,5S)-3- oxabicyclo[3.3.0]oct-6-en-2-one a partir de (+/-)-cis-bicyclo[3.2.0]hept-2-en-6-one, probablemente como resultado de la activación de enzimas monooxigenasas.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Alphand, V., A. Archelas & R. Furstoss. 1989. One_step synthesis of a pivotal prostaglandin chiral synthon via highly enantioselective microbiological Baeyer-Villiger type reaction. Tetrahedron Letters 30 (28):3663-3664. DOI: https://doi.org/10.1016/S0040-4039(01)80476-7

Andreotti, E. A.A. 2002-2004. Funghi endofiti come potenziale strumento di individuazione di molecole di interesse farmaceutico. Tesi di dottorato di ricerca in biocatalisi applicata e microbiologica industriale. Dipartimento delle Risorse Naturali e Culturali. Universitá di Ferrara.

Barceloux, D. G. 2008. Medical Toxicology of Natural Substances, Food, Fungi, Medicinal Herbs, Plants and venomous Animals. WILEY. DOI: https://doi.org/10.1002/9780470330319

Bastos Borges, K., W. De Souza Borges, M. Tallarico Pupo & P. Sueli Bonato. 2007. Endophytic fungi as models for the stereoselective biotransformation of thioridazine. Applied Microbiology Biotechnology 77: 669-674. DOI: https://doi.org/10.1007/s00253-007-1171-x

Bös, M., F. Jenck, J.R. Martin, J. Moreau, A.J. Sleight, J. Wichmann & U. Widmer. 1997. Novel agonists of 5HT2C receptors. J. Med. Chem 40: 2762-2769. DOI: https://doi.org/10.1021/jm970030l

Csuk, R. & B. I. Glanzer. 1991. Baker's yeast mediated transformations in organic chemistry. Chemical Review 91: 49-97. DOI: https://doi.org/10.1021/cr00001a004

Dikshit A., A.A. Naqvi & A. Husain. 1986. Schinus molle: a new source of natural fungitoxicant, Applicated Environmental Microbiology 51(5):1085-1088. DOI: https://doi.org/10.1128/aem.51.5.1085-1088.1986

Fukui, H., Y. Tsuchiya, K. Fujita, T. Nakagawa, H. Koshino & T. Nakata. 1997. Synthesis and biological activity of artificial analogs of mycalamide A. Bioorganic & Medicinal Chemistry Letters 7 (16):2081-2086. DOI: https://doi.org/10.1016/S0960-894X(97)00365-X

Giri A., V. Dhingra, C.C. Giri, A. Singh, O.P. Ward & M.L. Narasu. 2001. Biotransformations using plant cells, organ, culture and enzyme systems: current trends and future prospects. Biotechnology Advances 19: 175-199. DOI: https://doi.org/10.1016/S0734-9750(01)00054-4

Guerrini A., G. Sacchetti, D. Rossi, G. Paganetto, M. Muzzoli, E. Andreotti, M. Tognolini, M. Maldonado & R. Bruni. 2009. Bioactivities of Piper aduncum L. and Piper obliquum Ruiz & Pavon (Piperaceae) essential oils from Eastern Ecuador. Environmental Toxicology and Pharmacology 27: 39- 49. DOI: https://doi.org/10.1016/j.etap.2008.08.002

Gundidza M. 1993. Antimicrobial activity of essential oil from Schinus molle Linn. The Central African Journal of Medicine 39(11): 231-234.

Iwaki, H., S. Wang, S. Grosse, H. Bergeron, A. Nagahashi, J. Lertvorachon, J. Yang, Y. Konishi, Y. Hasegawa & P.C.K. Lau. 2006. Pseudomonad cyclopentadecanone monooxygenase displaying an uncommon spectrum of Baeyer-Villiger oxidation of cyclo ketones. Applied and Environmental Microbiology 72: 2707-2720. DOI: https://doi.org/10.1128/AEM.72.4.2707-2720.2006

Kaminska, J., I. Gornicka, M. Sikora & J. Gora. 1996. Preparation of homochiral (S)- and (R)-1-(2- furyl)ethanols by lipase-catalyzed transesterification. Tetrahedron Asymmetry 7 (3): 907-910. DOI: https://doi.org/10.1016/0957-4166(96)00088-2

Kloucek, P., B. Svobodova, Z. Polesny, I. Langrova, S. Smrcek & L. Kokoska. 2006. Antimicrobial activity of some medicinal barks used in Peruvian Amazon. Journal of Ethnopharmacology 111 (2): 427-429. DOI: https://doi.org/10.1016/j.jep.2006.11.010

Masood, A.W., S. Kaul, M.K. Dhar & K.L. Dhar. 2010. GC-MS analysis reveals production of 2-phenylethanol from Aspergillus niger endophytic in rose. Journal of Basic Microbiology 50: 110-114. DOI: https://doi.org/10.1002/jobm.200900295

Meela, M., L. Mdee & J.N. Eloff. 2008. Prospects for use of alien invasive weed extracts against fungal phytopathogenes. African Journal of Traditional, Complementary and Alternative medicines, Abstract of the world congress on medicinal and aromatic plants, Cape Town.

Mittermeier, R.A., P.R. Gil & G.G. Mittermeier. 1997. Megadiversity: Earth’s Biologically Wealthiest Nations. Conservation International, Cemex, Mexico.

Moreno Rueda M.G. A. A. 2007/2009. Biotrasformazioni di terpeni e oli essenziali con batteri e funghi isolati da frutti del genere Citrus della foresta amazzonica (Ecuador). Tesi di dottorato di ricerca in Biochimica, Biologia molecolare e Biotecnologie, Ciclo XXII.

Orwa, C., A. Mutua, R. Kindt, R. Jamnadass & A. Simons. 2009. Agroforestry database: a tree reference and selection guide, version 4.0. Online at: http://www.worldagroforestry.org/af/t reedb/ (accessed October 2012).

Piacente, S., L.C. Dos Santos, N. Mahmood & C. Pizza. 2006. Triterpenes from Maytenus macrocarpa an evaluation on their anti-HIV activity. Natural Product Communications 1 (12):1073-1078. DOI: https://doi.org/10.1177/1934578X0600101201

Rai, M. & D. Mares. 2003. Plant-derived Antimycotics. Food Products Press.

Ramesh, T., V. Anusha & A.R. Kumar. 2009. Antibacterial activity of methanolic extract of roots of Tecoma stans. International Journal of Chemical Sciences 7(1): 6-8.

Rios, M., M. J. Koziol, H. B. Pedersen & B. Granda. 2007. Useful Plants of Ecuador. Ediciones Abya Ayala- Quito-Ecuador.

Romagnoli, C. & G. Sacchetti. 2003. A new technique for the evaluation of antifungal activity of an alcohol extract of Eugenia caryophyllata Thunberg on Penicillium digitatum. In: Plant-Derived antimycotics, Current Trends and future prospects. Rai M., Mares D. Eds. Food Products Press, An Imprint of The Haworth Press, Inc., New York.

Schultes, R. E. & R. F. Raffauf. 1995. The Healing Forest: Medicinal and Toxic Plants of Northwest Amazonia. Dioscorides Press, Portland, Oregon, EE.UU.

Shirota, O., S. Sekita, M. Satake, H. Morita, K. Takeya & H. Itokawa. 2004. Two new sesquiterpene pyridine alkaloids from Maytenus chuchuhuasca. Heterocycles 63-68. DOI: https://doi.org/10.3987/COM-04-10110

Stead, P., H. Marley, M. Mahmoudian, G. Webb, D. Noble, Y. To Ip, E. Piga, T. Rossi, S. Roberts & M.J. Dawson. 1996. Efficient procedures for the large-scale preparation of (1S,2S)- trans-2-methoxycyclohexanol, a key chiral intermediate in the synthesis of tricyclic β-lactam antibiotics. Tetrahedron Asymmetry 7(8): 2247-2250. DOI: https://doi.org/10.1016/0957-4166(96)00279-0

Strobel, G. A. 2003. Endophytes as source of bioactive products. Microbes and Infection 5: 535-544. DOI: https://doi.org/10.1016/S1286-4579(03)00073-X

Suryanarayanan, T.S., N. Thirunavukkarasu, M. B. Govindarajulu, F. Sasse, R. Jansen & T.S. Murali. 2009. Fungal endophytes and bioprospecting. Fungal Biology Reviews 23: 9-19. https://doi.org/10.1016/j.fbr.2009.07.001 DOI: https://doi.org/10.1016/j.fbr.2009.07.001

Tan, R. X. & W. X. Zou. 2001. Endophytes: a rich source of functional metabolites. Nat. Prod. Rep. 18: 448-459. https://doi.org/10.1039/B100918O DOI: https://doi.org/10.1039/b100918o

Urlacher, V.B. & S. Eiben. 2006. Cytochrome P450 monooxygenases: Perspectives for synthetics application. Elsevier DOI: https://doi.org/10.1016/j.tibtech.2006.05.002

Wang, J.W., J. H. Wu, W. Y. Huang & R. X. Tan. 2006. Laccas production by Monotospora sp., an endophytic fungus in Cynodon dactylon. Bioresources Technology 97 (5): 786-789. https://doi.org/10.1016/j.biortech.2005.03.025 DOI: https://doi.org/10.1016/j.biortech.2005.03.025

Descargas

Publicado

2012-12-28

Cómo citar

Scalvenzi Foglia, L. . (2012). Biotransformaciones por hongos endófitos aislados de plantas medicinales tradicionales ecuatorianas: conectando la etnomedicina con la biotecnología. Revista Amazónica. Ciencia Y Tecnología, 1(3), 248–270. https://doi.org/10.59410/RACYT-v01n03ep06-0020